The lysine deacetylase Sirtuin 1 modulates the localization and function of the Notch1 receptor in regulatory T cells

Some interesting fact of my work

The ability to tune cellular functions in response to nutrient availability has important consequences for immune homeostasis. The activity of the receptor Notch in regulatory T (Treg) cells, which suppress the functions of effector T cells, is indispensable for Treg cell survival under conditions of diminished nutrient supply. Antiapoptotic
signaling induced by the Notch1 intracellular domain (NIC) originates from the cytoplasm and is spatially decoupled from the nuclear, largely transcriptional functions of NIC. We showed that Sirtuin 1 (Sirt1), which is an NAD+ (nicotinamide adenine dinucleotide)–dependent lysine deacetylase that inhibits NIC-dependent gene
transcription, stabilized NIC proximal to the plasma membrane to promote the survival and function of activated Treg cells. Sirt1 was required for NIC-dependent protection from apoptosis in cell lines but not for the activity of the anti-apoptotic protein Bcl-xL. In addition, a variant NIC protein in which four lysines were mutated to arginines (NIC4KR) retained anti-apoptotic activity, but was not regulated by Sirt1, and reconstituted the functions of nonnuclear NIC in Notch1-deficient Treg cells. Loss of Sirt1 compromised Treg cell survival, resulting in antigen-induced T cell proliferation and inflammation in two mouse models. Thus, the Sirt1-Notch interaction may constitute an important checkpoint that tunes noncanonical Notch1 signaling.

read full paper Sanjay K Shukla

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s