Apoptosis vs. Necrosis

Apoptosis vs. Necrosis

 u7rZ4

 

Apoptosis Necrosis
A form of cell death that is generally triggered by normal, healthy processes in the body.

Apoptosis, which can also occur as a defense mechanism during healing processes, is almost always normal and beneficial to an organism, As a usually healthy form of a cell’s life cycle, apoptosis rarely demands any form of medical treatment

cell death that is triggered by external factors or disease, such as trauma or infection

Necrosis is always abnormal and harmful. Though necrosis is being researched as a possible form of programmed cell death (that is, a sometimes natural process), it is considered an “unprogrammed” (unnatural) cell death process at this time, but untreated necrosis can lead to serious injury or even death

Process

Membrane blebbing, shrinkage of cell, nuclear collapse (nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation),  apoptotic  body formation. Then, engulf by white blood cells.

Process

Membrane disruption, respiratory poisons and hypoxia which cause ATP depletion, metabolic collapse, cell swelling and rupture leading to inflammation.

Usually no noticeable symptoms related to the process. Inflammation, decreasing blood flow at affected site, tissue death (gangrene).
Self-generated signals in a cell. Generally natural part of life, the continuation of the cellular cycle initiated by mitosis.

Very rarely needs treatment

Always requires medical treatment. Untreated necrosis is dangerous and can lead to death.

Apoptotic and Necrotic Processes

Both apoptosis and necrosis can be seen as part of a spectrum of shared biochemical events that both result in some form of cellular death.

Apoptosis, or programmed cell death (PCD), causes cells to shrink, develop blebs(bubble-like spots) on the cell membrane, undergo degradation of genetic and protein materials in the nucleus, and have their mitochondria break down, thus releasing cytochrome. The fragments are each wrapped in their own membrane, with other chemicals (such as ATP and UTP) released freely. These chemicals lead macrophages — cell-eating bodies — to find and eliminate the dead cells and their fragments. This “eat me” message is triggered by a phospholipid normally inert in a cell’s membrane, and the macrophages in turn release cytokines that inhibit inflammatory responses.

In contrast, necrotic cells swell or may form vacuoles on their surface, with interior structures either distending or shrinking rapidly, destroying the cell’s processes and chemical structures. The unregulated release of cytochrome and the cell membrane’s phospholipid (called phosphatidylserine) causes immediate reactions in surrounding tissues, leading to swelling (inflammation) and edema; it also often triggers other cell deaths through apoptosis. Unlike apoptosis, necrotic cells are not targeted by macrophages for cleaning of their cellular debris, so the effects of the cell rupture can spread quickly and throughout the body for long periods of time.

 video 

Energy Input

Apoptosis is energy-dependent, meaning it requires input from a cell for cell death to occur, leading to the term “cell suicide.” Necrosis does not require any energy input from a cell, as external factors or localized infections are what trigger necrosis.

Caspases

For the apoptotic pathways that cause cell suicide, the primary molecular signals are inactive proenzymes called caspases. Necrosis sometimes makes uses of caspases, but to a much lesser degree, and often the process makes no use of them, as a cell itself is destroyed in an uncontrolled fashion during necrotic events. For example, necrosis is the process behind dying, or necrotic, tissue that surrounds, say, a venomous spider bite.

Research has identified as many as 13 caspases, broadly categorized as initiators, effectors, or executioners (the ones that directly trigger cell death), and inflammatory. Despite what it may sound like, inflammatory caspases actually inhibit inflammation. As necrosis lacks the inflammatory caspase input, inflammation is always present in necrotic cell death.

Apoptotic and Necrotic Symptoms

Because apoptosis is a normal part of an organism’s cellular balance, there are no noticeable symptoms related to the process. In contrast, necrosis is an uncontrolled change in an organism’s cell balance, so it is always harmful, resulting in noticeable, negative symptoms.

Necrosis is accompanied in its early stages by inflammation, as components (including cell structures, cytoplasm, and DNA/RNA) of the ruptured or damaged cells are released. To an organism, this unregulated flow of proteins, chemicals, and genetic material triggers emergency responses, such as inflammation to protect surrounding tissues, as well as an increase in white blood cells, macrophages, and T cell production to fight off infection. These reactions are often accompanied by a metabolic boost and fever, which can lead to fatigue and an overall weakened immune system.

If left untreated, necrotic tissues will lose vascularity, meaning they will lose blood flow, and thus start dying. When this happens, the necrosis is called gangrene, a condition where tissue ultimately dies and must be removed to stop necrosis from expanding.

When Apoptosis is Unhealthy

Apoptosis becomes abnormal only when the cellular processes that keep the body in balance either cause too many cell deaths or cause too few. Many autoimmune diseases, such as muscular dystrophy and Alzheimer’s, are believed to be related to excessive apoptosis, causing muscle or nerve cells to die before their time. Cells that grow without control, meaning apoptosis is not happening often enough, usually lead to tumors, which themselves can become cancerous.

General Causes of Apoptosis and Necrosis

There are three mechanisms that cause cell death:

  1. Self-generated signals in a cell, which may arise from age, infection, irregular mitosis (cell division), or other causes. This mechanism is known as the intrinsic or mitochondrial pathway, whereas the following two types of cell death are extrinsic pathways.
  2. The triggering of death activators, receptors on a cell’s surface that respond to external signals such as hormones or other chemical messengers.
  3. External triggering by reactive oxygen species, such as free radicals, which are dangerous to the body.

In general, apoptosis is part of life, the continuation of the cellular cycle initiated by mitosis. However, apoptosis can be triggered by a variety of harmful stimuli, such as heat, radiation, lack of oxygen (hypoxia), drugs and trauma, among others. In these cases, apoptosis rids the body of damaged cells or cells that can no longer perform normally and helps heal damaged areas. Higher degrees of damage from the same stimuli can lead to necrosis. For example, a mild burn can cause a small blister that heals in a week, but a third-degree burn will cause necrosis in the affected area.

Apoptosis can also be caused by hormonal and chemical changes in the body, a process most often seen in embryonic development. Both the immune and nervous systems develop with a large over-production of cells that are reduced before birth through selective processes carried out by apoptosis. For example, fetuses develop hands and feet without individual digits; once a chemical messenger is released, the webbed tissue between the fingers and toes dies off, separating each digit. A similar process occurs with sexual differentiation, as hormones guide fetal development to suppress or eliminate certain tissues and structures in favor of developing others. On the other hand, if necrosis is present during fetal development, some form of medical intervention is often required, and deformation or miscarriage may occur.

Types of Necrosis and Their Causes

In necrosis, a cell’s death is usually caused by a sudden and uncontrolled rupture based on two mechanisms:

  1. Interference with the cell’s energy supply (blood, plasma, oxygen, etc.).
  2. Direct damage to the cell membrane.

Necrosis is categorized in five ways, depending on the cause:

  1. Bacterial or fungal infections may cause liquefactive necrosis. This is necrosis that includes the liquefied mass of dead tissue known as “pus.”
  2. The necrosis that arises from denatured proteins that impede proper circulation is called coagulative necrosis. This type is seen most often in the heart after an infarction, as well as in kidneys and adrenal glands.
  3. Fungal and mycobacterial infections, such as tuberculosis, can cause gaseous necrosis. This combination of liquefactive and coagulative necrosis is caused by dead cells that are not completely digested by microphages; they leave a granular residue that impedes circulation.
  4. Necrosis that occurs only in fatty tissue is called fat necrosis. The most common form of this necrosis is associated with pancreatitis, severe inflammation of the pancreas.
  5. Deposits of antigens and antibodies combined with fibrin can adhere to and eventually block arteries and destroy their structure. This is called fibrinoid necrosis.

Treatment

Apoptosis and necrosis are treated in very different ways, primarily based on the fact that one process is often normal and the other is patently abnormal.

Although much of the apoptosis process is identified, the mechanisms and activation cascade is not yet fully understood. Research into the pathways is widespread and expanding as the clinical findings have direct applications to autoimmune diseases, such as Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, and HIV/AIDS, as well as nearly all types of cancer. Because apoptosis is a process of health and disease, the more it is understood, the better the chances are of developing more effective and better-targeted treatments. In all cases, untreated necrosis is dangerous and can lead to death.

In the case of autoimmune diseases, where apoptosis is causing too many cell deaths, treatment consists of inhibiting the caspase triggers or reducing the external triggers that may be precipitating the increased cell suicides. For cancer, the opposite is needed, so treatment to induce apoptosis in the tumor cells, making the cells more vulnerable to drugs and radiation, is a key part of most therapies. A promising new treatment involves the generic compound dichloroacetic acid (DCA), which has been shown to be highly-effective in “reigniting” apoptosis in certain cancerous tumors.

 

The common treatments for necrosis are:

  1. Antibiotics/NSAIDs: these fight the infectious and inflammatory nature of necrosis and are often the first line of defense against its damage. In extreme cases, immuno suppressing drugs may be prescribed to reduce the inflammatory response.
  2. Debridement: removal of the dead tissue, from simple cleaning of the area to surgery, including amputation. Fly larvae (maggots) are also used quite effectively in some forms of debridement.
  3. Antioxidants: may be used to treat internal necrotic tissues, most often related to ischemia, the end result of heart tissue losing vascularity after an infarction (heart attack).

Occurrence

With over 50 billion cells naturally dying in an adult human body each day, apoptosis is very common and typically benign, if not entirely beneficial. Necrosis is relatively rare by comparison, and the degree of cellular death depends greatly on whether effective treatments, such as antibiotics and anti-inflammatory drugs, are applied.

References

  • Apoptosis –Kimball’s Biology Pages
  • Apoptosis: A Review of Programmed Cell Death –Toxicologic Pathology
  • Necrosis: a specific form of programmed cell death? –ScienceDirect
  • Programmed Cell Death –

    Thanks for  visiting the blog. If you have any suggestion related to this or need update on some particular topic which bothers the most.You are most welcome to inform me.Your suggestion will be incorporated in the future updates. To know more about me follow me on Facebook-Sanjay  or get in touch on Sanjay_ home page.
    Best wishes,
    -sanjay

  • -sanjay
  • source of the material:diffen-logo-300px
Advertisements

8 thoughts on “Apoptosis vs. Necrosis

  1. Hello Web Admin, I noticed that your On-Page SEO is is missing a few factors, for one you do not use all three H tags in your post, also I notice that you are not using bold or italics properly in your SEO optimization. On-Page SEO means more now than ever since the new Google update: Panda. No longer are backlinks and simply pinging or sending out a RSS feed the key to getting Google PageRank or Alexa Rankings, You now NEED On-Page SEO. So what is good On-Page SEO?First your keyword must appear in the title.Then it must appear in the URL.You have to optimize your keyword and make sure that it has a nice keyword density of 3-5% in your article with relevant LSI (Latent Semantic Indexing). Then you should spread all H1,H2,H3 tags in your article.Your Keyword should appear in your first paragraph and in the last sentence of the page. You should have relevant usage of Bold and italics of your keyword.There should be one internal link to a page on your blog and you should have one image with an alt tag that has your keyword….wait there’s even more Now what if i told you there was a simple WordPress plugin that does all the On-Page SEO, and automatically for you? That’s right AUTOMATICALLY, just watch this 4minute video for more information at. Seo Plugin

    Like

  2. Hi my name is Sandra and I just wanted to drop you a quick note here instead of calling you. I came to your Apoptosis vs. Necrosis | sanjay’s Blog page and noticed you could have a lot more traffic. I have found that the key to running a popular website is making sure the visitors you are getting are interested in your subject matter. There is a company that you can get targeted traffic from and they let you try their service for free for 7 days. I managed to get over 300 targeted visitors to day to my site. Visit them here: http://tgi.link/dcf2

    Like

  3. Hello Web Admin, I noticed that your On-Page SEO is is missing a few factors, for one you do not use all three H tags in your post, also I notice that you are not using bold or italics properly in your SEO optimization. On-Page SEO means more now than ever since the new Google update: Panda. No longer are backlinks and simply pinging or sending out a RSS feed the key to getting Google PageRank or Alexa Rankings, You now NEED On-Page SEO. So what is good On-Page SEO?First your keyword must appear in the title.Then it must appear in the URL.You have to optimize your keyword and make sure that it has a nice keyword density of 3-5% in your article with relevant LSI (Latent Semantic Indexing). Then you should spread all H1,H2,H3 tags in your article.Your Keyword should appear in your first paragraph and in the last sentence of the page. You should have relevant usage of Bold and italics of your keyword.There should be one internal link to a page on your blog and you should have one image with an alt tag that has your keyword….wait there’s even more Now what if i told you there was a simple WordPress plugin that does all the On-Page SEO, and automatically for you? That’s right AUTOMATICALLY, just watch this 4minute video for more information at. Seo Plugin

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s